Conv¶
dataphy.visionpack.tforms.conv
¶
Classes¶
RandomConv(kernel_variance: float = 0.05, kernel_size: int = 3, per_channel: bool = True, normalize_gain: bool = True, alpha_identity: Optional[List[float]] = None, sample_mode: Literal['gaussian', 'bank', 'hybrid'] = 'gaussian', kernel_bank: Optional[List] = None, bank_prob: float = 0.3, passes: int = 1, boundary: Literal['reflect', 'replicate', 'zeros'] = 'reflect', **kwargs: Any)
¶
Bases: BaseTransform
Source code in src/dataphy/visionpack/tforms/conv.py
Attributes¶
kernel_variance = kernel_variance
instance-attribute
¶
kernel_size = kernel_size
instance-attribute
¶
per_channel = per_channel
instance-attribute
¶
normalize_gain = normalize_gain
instance-attribute
¶
alpha_identity = alpha_identity or [0.0, 1.0]
instance-attribute
¶
sample_mode = sample_mode
instance-attribute
¶
kernel_bank = kernel_bank or self._create_default_kernel_bank()
instance-attribute
¶
bank_prob = bank_prob
instance-attribute
¶
passes = passes
instance-attribute
¶
boundary = boundary
instance-attribute
¶
padding = kernel_size // 2
instance-attribute
¶
p = p
instance-attribute
¶
apply_to = apply_to if apply_to is not None else ['rgb']
instance-attribute
¶
sync_views = sync_views
instance-attribute
¶
update_intrinsics = update_intrinsics
instance-attribute
¶
mask_protect = mask_protect if mask_protect is not None else []
instance-attribute
¶
min_visible_mask_pct = min_visible_mask_pct
instance-attribute
¶
resample = resample
instance-attribute
¶
border_mode = border_mode
instance-attribute
¶
pad_mode = pad_mode
instance-attribute
¶
pad_value = pad_value
instance-attribute
¶
seed_policy = seed_policy
instance-attribute
¶
Functions¶
forward(batch: Dict[str, Any]) -> Dict[str, Any]
¶
Base forward method that handles cross-cutting logic.