API Reference¶
Complete API documentation for the Dataphy SDK, auto-generated from code docstrings.
Overview¶
The Dataphy SDK is organized into several key modules:
- Dataset Management: Loading, managing, and augmenting robotics datasets
- VisionPack: Augmentation pipeline with transforms and adapters
- Data Sources: Adapters for various data platforms and formats
- Visualization: 3D visualization tools powered by rerun.io
- CLI: Command-line interface implementation
- I/O Operations: Input/output utilities and manifest management
Quick Start¶
The main entry points for the API are:
Dataset Loading¶
from dataphy.dataset.registry import create_dataset_loader, DatasetFormat
# Auto-detect format (recommended)
loader = create_dataset_loader("./dataset")
# Explicit format
loader = create_dataset_loader("./dataset", DatasetFormat.LEROBOT)
Episode Augmentation¶
from dataphy.dataset.episode_augmentor import EpisodeAugmentor
augmentor = EpisodeAugmentor(loader)
augmentor.augment_episode(
episode_id=0,
config_file="config.yaml"
)
VisionPack Pipeline¶
from dataphy.visionpack.pipeline import build_pipeline
pipeline = build_pipeline("config.yaml", device="cuda")
augmented_batch = pipeline(batch)
Type Hints and Annotations¶
All public APIs include comprehensive type hints for better IDE support and code safety. Import common types:
Error Handling¶
The SDK uses descriptive exception types:
ValueError: Invalid parameters or dataFileNotFoundError: Missing files or directoriesRuntimeError: Unexpected runtime errors- Custom exceptions for specific error cases
Navigation¶
Use the navigation on the left to explore specific modules and classes. Each module page includes:
- Class and function signatures
- Detailed parameter descriptions
- Return value documentation
- Usage examples
- Source code links